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Classical tunneling as a consequence of radiation reaction forces
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~Received 13 February 1996!

We show that the classical equation of motion of a radiating charged point particle~the Lorentz-Dirac
equation! has ‘‘tunneling’’ solutions. For a given initial position and velocity we find that, contrary to common
belief, several different physically acceptable solutions exist for a range of initial data. Both features are
demonstrated for a rectangular barrier. To check that these phenomena are not dependent on the discontinuities
of the potential, we also study in detail the solutions for a smoothened~single! potential step.
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I. INTRODUCTION

In classical relativistic electrodynamics the motion of
electrically charged point particle~without further structure;
we will call it an ‘‘electron’’ for brevity! is governed by the
Lorentz-Dirac~LD! equation@1#. For general reference, se
Ref. @2#, and especially Ref.@3#. It includes the effect of the
back-reaction of the~retarded! field generated by the electro
during its past on its own motion. The radiation reaction
taken into account through a renormalization procedure
which the bare mass of the electron and the electromagn
self-energy combine to the physical inertial mass. We w
show that this classical equation exhibits tunneling.

There exists a variety of methods@1,3–8# to derive this
equation, the most comprehensive ones being based on
ergy and momentum conservation. The LD equation eme
as the unique result, if one assumes that, except for
charge, the electron possesses no other attributes like d
or higher multipole moments. It reads

z̈m5
e

m
Fmnżn1tS z̈2żm

c2
1 ẑmD , ~1!

wherezm is the position of the electron~and the singularity
of its electromagnetic field!, dots denote derivatives with re

spect to proper time, andt5 2
3(e

2/4pe0mc3).0.62310223 s
is the ‘‘preacceleration time.’’ The fieldFmn only includes
the electromagnetic field generated by external sources.
last two terms in Eq.~1! are due to the radiation reaction
The first is ~minus! the derivative of the radiated four mo
mentum, and the second, the Schott term, can be comb
with the left-hand side into the time rate of change
pm5m( żm2t z̈m), the ‘‘bound momentum.’’ That momen
tum can consistently be interpreted as the total momentum
the electron together with its bound field@8#. We will simply
call it the momentum in the sequel. Asymptotically, wh
the acceleration ceases, it is equal to the usual moment

To set in perspective the remarkable fact that thisclassi-
cal equation allows the electron to tunnel through poten
barriers that are narrow enough to be crossed in a pro
time t, we first discuss some general features of Eq.~1!.
Although the Lorentz-Dirac equation describes the radiat
reaction in a satisfactory way, and has been used in a va
561063-651X/97/56~3!/3624~4!/$10.00
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of circumstances — the most extreme ones being the as
physical applications@9# — it also exhibits some feature
that have raised eyebrows. For this third-order equation,
initial value problem demands a specification of initial po
tion, velocity,and acceleration. The solution is then unique
but in general unphysical, describing a ‘‘runaway,’’ i.e.
motion with an exponentially increasing velocity, even in
force-free spatial region. The specification of initial accele
tion has therefore traditionally been replaced by
asymptoticcondition stating that the~unobserved! runaways
are rejected~or, perhaps more physically, by formulating th
LD equation as an integrodifferential equation!. From the
mathematical point of view, the first question to be answe
is then, whether a satisfactory solution still exists for reas
able initial data, and whether it is unique. This last point w
‘‘one of the most important unsolved problems of th
theory’’ @10#, and remained unresolved, even though so
isolated cases have been found@11# of initial data ~for posi-
tion and velocity! that allow more than one solution. As w
will demonstrate, nonuniqueness of solutions actually occ
quite generically. The LD equation also gives rise to a n
physical phenomenon: preacceleration. Indeed, the effec
the asymptotic boundary condition in the future makes its
felt at early times, implying that an electron approaching
sharply delineated region in space where a force field
present, actually starts acceleratingbefore it reaches the
force field. This is sometimes considered to be an unde
able feature. A number of alternatives to the LD equat
have been~re-!proposed over the years@12#, but either run
into difficulties ~mainly with energy conservation!, or neces-
sitate additional structure. Although some of them may
valid as models for an electron that has an extended st
ture, we will not consider these alternatives further.

II. RECTANGULAR POTENTIAL:
TUNNELING AND NONUNIQUENESS OF SOLUTIONS

In view of the considerable attention that the LD equatio
and its solutions, have generated, it is remarkable that
class of solutions that we are about to describe, with surp
ing physical implications, has gone unnoticed so far. Th
describetunneling. Explicit examples can be found by con
sidering the familiar setting from quantum mechanics: a o
dimensional problem, where an electron impinges on a
3624 © 1997 The American Physical Society
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56 3625CLASSICAL TUNNELING AS A CONSEQUENCE OF . . .
gion with a rectangular potential energy barrier. For o
purposes the nonrelativistic approximation~NRA! will be
sufficient. Let us denote the external force field
F52dV/dx. Choosing units such that the electron mass,
velocity of light, and the characteristic timet are equal to
unity, the equation becomes, withv5 ẋ,

ṗ5 v̇2 v̈5F. ~2!

The electron only experiences a force when crossing
boundaries of the regions of constant potential. The soluti
in the separate force-free regions, which are easy to w
down explicitly, are connected using the following matchi
condition on the momentum, or the acceleration, the posi
and the velocity being continuous:

Dp52D v̇52DV/v. ~3!

This can be checked using the formal equat
ṗ5DVd(x). The validity of the rectangular barrier idealiza
tion is discussed later. The asymptotic condition is most e
ily implemented by solving the matching conditions bac
ward in time, putting v̇ f50 ~a procedure that is als
expedient when numerically integrating the equation!. In the
nonrelativistic approximation Eq.~2!, this results in the fol-
lowing set of equations relating the initial and final velociti
to the timeT spent in the barrier region of widthw and
heightV:

w5v fT2
V

v f
~e2T211T!,

v i5v f2
V

v f
1

V

v f2
V

v f
~12e2T!

. ~4!

Although the analysis of these equations in general is
very difficult, it becomes particularly simple when the fin
electron energy is equal to half the barrier height,V5v f

2 . An
explicit example is, forV5144 andw53,

x5 27~et21!116t, t,0,

9~et21!, 0,t,T,

3112~ t2T!, T,t, ~5!

with T5 ln4/3. The matching condition Eq.~3! implies jumps
of 16 and212 units in the acceleration att50 and t5T.
Tunneling occurs, and the initial energy is equal to 128
fraction 1/9 below the barrier height.

Whereas the details of the example above are of co
special, the tunneling phenomenon is actually quite gene
A decisive parameter is the width of the potential. If t
electron can cross the barrier within a time of order 1, i
the preacceleration timet, tunneling occurs. To understan
this it suffices to follow the bound momentum while th
electron crosses the barrier. Its value is piecewise cons
and in the regions outside the barrier equal to its asympt
value. Under the barrier itself the value isv f2V/v f , which
may be in the same directionor oppositeto the velocity. The
example above is special, in that the intermediate momen
r
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vanishes. Without external force, if the velocity is direct
opppositely, it will quickly turn in a time of ordert in the
same direction as the~conserved! momentum. If the width is
small enough, the electron has in the meantime reached
opposite side of the barrier. The smaller the width, the wi
the range of initial velocities for which the electron will tun
nel through.

The explicit solution given above can be used to illustr
another remarkable property of the LD equation~together
with the asymptotic condition!, viz. the failure of initial data
to determine the solution uniquely. If we take a barrier e
tending from x53 to some valuex,29, and specify
x529 and zero velocity in the infinite past, the second li
of Eq. ~5!, extended to negative times, together with the l
line, constitute a solution that is an alternative to the triv
one with constantx. This nonuniqueness is also mentioned
Ref. @11#. We do not regard this as a sufficient answer to
initial condition question of Rohrlich@10# cited above. It is
analogous to the ambiguity present already in Newton
mechanics, when specifying, in the infinite past, a zero
locity at the top of a mountain: it is an isolated special ca
and an infinitesimally small initial velocity eliminates th
stationary solution. Of considerably more interest is the f
that rectangular barrier crossing, whether by tunnel
through or by passing over it, very often exhibits a mu
more generic nonuniqueness, as has also been noted in
@13# ~however, this study has some problems; see furth!
and @15#. For values of the initial velocity sufficiently large
to cross the barrier, there is in general more than one dist
solution, typically one where almost all energy is radiat
away and up to five~see later! where a smaller radiation los
occurs. This shows that the nonuniqueness is a common
ture of the LD equation: given the no-runaway condition,
is generically still insufficient to specify position and mo
mentum at some initial time. This is true not only fo
asymptotic initial values, but also for initial values at fini
times. This conclusion was also reached in Ref.@14#.

It is important to realize that the features discussed ab
do not depend on the nonrelativistic approximation involve
There is a simple scaling property of the NRA that leav
this equation invariant, viz. rescaling all lengths, velocitie
and accelerations with a common factor, and the bar
height with its square. This implies that we can always r
cale such that only small velocities are involved, and o
discussion applies. It is also possible to obtain explicit~but
much more complicated! tunneling solutions of the relativis
tic equation~1! itself. The existence of the tunneling solu
tions is therefore beyond doubt.

III. CONTINUOUS POTENTIAL: THE RAMP

What is less clear is the possible role played by the sha
ness of the potential step. Indeed, for the discontinuous
tential step, it turns out that the problem as formulated ab
hasno solution for small incident velocities. This was no
ticed, for a single potential step, in Ref.@13#. It was stated
there that no mathematical difficulties are associated with
idealization of a sharp step. Physically, however, this
sence of solutions for a given initial velocity range is pro
ably unacceptable. To investigate this point, and to ascer
at the same time that the tunneling feature is not correlate
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this unphysical behavior, we repeated the analysis when
electron climbs a ramp with a finite slope. We take the for
F to be a constant over a region of widthe, with V5eF.
~We will always consider a fixed heightV when we consider
the small-e limit !. At the moment we consider only a singl
ramp, we will come back to the tunneling situation late
Again, in each of the regions of constant force, the LD equ
tion can be solved exactly~NRA! in terms of elementary
functions, for instance in the sloping regio
x52F(et212t2t2/2)1v f t. Then we again investigate th
matching conditions. We use the same backward-in-ti
method as before.

Several possibilities arise. These are summarized in Ta
I. In Fig. 1 ~see the inset! we plot the kinetic energy as a
function of the position. A first possibility is that the fina
velocity is directed away from the high plateau. Followin
the electron back in time, two subcases can be distinguish
the electron is turned back inside the sloping region~case I!,
or it proceeds from the region of the high plateau. In t
latter case, the electron may turn backunderthe high plateau
~case II!, originating from the low plateau on the right after
first passage through the force field, or else originate fr
the far left ~case III!. Finally, the final velocity can be di-
rected away from the low plateau~case IV!. We now proceed
to discuss the resulting motion in these different cases
more detail, with the help of the plot of final versus initia
velocity in Fig. 1.

Case III: This motion agrees fully with intuition. For a

TABLE I. Overview of the four different types of motion, de
scribed in the text.

Case v i Turning point v f

I 2 inside sloping region 1

II 2 under plateau 1

III 1 1

IV 2 2

FIG. 1. Plot of the initial velocity vs the final velocity for the
solution of the Lorentz-Dirac equation in a linearly rising step p
tential ~note the difference in scale!. The dotted lines leave out the
radiation reaction. The inset shows the potential and kinetic en
gies as functions of position for four representative examples. T
four types of motion are discussed in the text. For the plots, a s
heightV59 was used, and a slope widthe50.5.
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gentle slope (e→`) the radiation energy loss is negligible
so that the final velocity is always larger thanA2V; for a
steep slope (e→0) with the same height, and small initia
velocity, half the energy is radiated away due to the lar
acceleration, and the final velocity approachesAV.

Case IV: Here it is of course necessary that the elect
has enough energy (.V) to overcome the barrier, and if th
slope is gentle this is sufficient. For a steep slope the m
mum initial energy is 2V. Note, however, the surprising fea
ture that the solution is not fixed by the initial velocity alon
for a range of initial velocities larger than the minimum r
quired to overcome the barrier, there are actually two diff
ent solutions.~The behavior for this branch has been foun
for the relativistic case, in Ref.@14#!. This range becomes
larger as the barrier becomes steeper, as 61/3V2/3e21/3 ~point
A in the figure!. So we see now that nonuniqueness of so
tions indeed persists when the potential step is replaced
a slope, and in fact we have also checked it numerically
a completely smooth ramp~a hyperbolic tangent!.

Cases I and II both represent reflections. The branch s
ing at the origin corresponds to case I, withe→0 limiting
behaviorv f;v i

2e/6V. The pointB where case II takes ove
is located atv i;35/6V2/3e21/3. This shows that the behavio
for a steep ramp is quite subtle. If one investigates only
~formal! limiting equation without taking this into accoun
one is likely to miss branch I, although it is clearly a phys
cally correct possibility, and in fact, for small velocities, th
solution is unique. The numerical study in Ref.@13# exhibits
this problem. We therefore reject the conclusion reach
there, that for small initial velocities no solutions would ex
at all. In the small-e limit, this branch tends to the vertica
axis. The type-II branch, on the other hand, has a smoo
limit, and reduces to the straightforward solution for infini
slope, as obtained from the matching condition Eq.~3!.
There is no type-II solution beyond pointC in the figure:
electrons with a larger final velocity necessarily origina
from the plateau, and are shown on branch III. For a v
gentle slope, the whole compound curve I and II, will a
proach the linev i52v f representing no radiation loss, whil
both pointsB andC converge toD (v f5A2V). For a very
steep slope, both pointsB andC move towards infinite initial
velocities ase21/3 ~with a fixed ratioA3/A3 2), and limiting
final velocities equal to 0 andAV, respectively.

Thus, when a high velocity electron meets a very ste
well, there is an amazing variety of different possible o
comes. It may lose some energy and travel on~curve IV, left
branch!, just barely make it up the hill~curve IV, right
branch! having lost most of its energy in radiation, or b
reflected with a choice ofthreedifferent velocities.

IV. DISCUSSION

It is clear that analogous results hold for a barrier w
finite width, and that tunneling solutions will persist fore
Þ0. Furthermore, we checked numerically that the qual
tive behavior discussed above is unaltered when using r
tivistic kinematics~with gv instead of the velocity as a pa
rameter!, and also in the case of an analytic~but rapidly
varying! potential. The tunneling solutions obtained for th
rectangular barrier are limiting solutions of those for
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56 3627CLASSICAL TUNNELING AS A CONSEQUENCE OF . . .
smoothened barrier~e.g., the potential of closely packe
point charges!. Thus we conclude that both the tunnelin
phenomenon and the nonuniqueness of physical solution
general properties of the LD equation, and not artifacts
to unphysical properties of the potential or the nonrelativis
approximation.

The key to the physical understanding of these phen
ena is the use of theboundmomentumpm introduced in Ref.
@8#. Apart from the radiation loss@the second term on th
right-hand side of Eq.~1!#, its rate of change is given by th
external force exerted on the electron. If the acceleratio
not too large, the difference from the ‘‘bare’’ momentum
just a mass renormalization, but when the electron velo
changes rapidly the accompanying self-field needs some
to adjust to the new velocity~the updating is limited by the
finite light speed!, andpm is no longer simply proportional to
żm .

When the electron attacks a steep slope, the bound
mentum has to decrease very rapidly. The electron can
ply decelerate and bounce back, but if the potential is nar
enough there is a second possibility: the electron can ma
‘‘jump,’’ i.e., a short acceleration, during which the boun
momentumdecreases. Because of itsnegativebare mass, the
bare electron gives a negative contribution to the bound
mentum, which cannot immediately be compensated for
tirely by the accompanying Coulomb field. When the acc
eration ceases, the Coulomb field catches up and the bo
momentum increases again, as it should once it reache
downward slope at the other side of the barrier. In this w
tunneling can take place. Note that the kinetic energyp02m
of
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becomes negative in the classically forbidden region.
The essential feature of tunneling is that the crossing

to take place in proper times of the order of the preaccele
tion time. For larger widths this could be obtained by co
sidering very high speed electrons, which would effective
see a Lorentz-contracted barrier. It is theoretically not di
cult to construct arrangements of individual charges t
might show the tunneling phenomenon for very fast el
trons ~in such cases one should also expect to have to
into account quantum effects.! Whereas in some astrophys
cal applications~for example the motion of charged particle
in fields produced by pulsars@9#! there is a combination o
fast electron motion with strong fields that necessitates
use of the Lorentz-Dirac equation, it is not clear wheth
they would provide a testing ground for the tunneling ph
nomenon described in this paper.

A rough estimate indicates that, for phenomena tak
place in times of ordert, quantum considerations shou
enter. Since quantum electrodynamics is arguably the m
successful physical theory known, it would be interesting
investigate its relation to the tunneling phenomenon d
cussed in the present paper, and more generally to
Lorentz-Dirac equation. This is outside the scope of
present paper.
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