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Classical tunneling as a consequence of radiation reaction forces
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We show that the classical equation of motion of a radiating charged point pdttield_orentz-Dirac
equation has “tunneling” solutions. For a given initial position and velocity we find that, contrary to common
belief, several different physically acceptable solutions exist for a range of initial data. Both features are
demonstrated for a rectangular barrier. To check that these phenomena are not dependent on the discontinuities
of the potential, we also study in detail the solutions for a smoothefstgle potential step.
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I. INTRODUCTION of circumstances — the most extreme ones being the astro-
physical applicationg9] — it also exhibits some features
In classical relativistic electrodynamics the motion of anthat have raised eyebrows. For this third-order equation, the
electrically charged point particl@vithout further structure; initial value problem demands a specification of initial posi-
we will call it an “electron” for brevity) is governed by the tion, velocity,and accelerationThe solution is then unique,
Lorentz-Dirac(LD) equation[1]. For general reference, see but in general unphysical, describing a “runaway,” i.e. a
Ref.[2], and especially Ref3]. It includes the effect of the motion with an exponentially increasing velocity, even in a
back-reaction of théretarded field generated by the electron force-free spatial region. The specification of initial accelera-
during its past on its own motion. The radiation reaction istion has therefore traditionally been replaced by an
taken into account through a renormalization procedure iasymptoticcondition stating that théunobservefirunaways
which the bare mass of the electron and the electromagnetare rejectedor, perhaps more physically, by formulating the
self-energy combine to the physical inertial mass. We willLD equation as an integrodifferential equatiofrrom the
show that this classical equation exhibits tunneling. mathematical point of view, the first question to be answered
There exists a variety of method$,3—8 to derive this is then, whether a satisfactory solution still exists for reason-
equation, the most comprehensive ones being based on emble initial data, and whether it is unique. This last point was
ergy and momentum conservation. The LD equation emerge®one of the most important unsolved problems of the
as the unique result, if one assumes that, except for ittheory” [10], and remained unresolved, even though some
charge, the electron possesses no other attributes like dipalgolated cases have been foddd] of initial data(for posi-
or higher multipole moments. It reads tion and velocity that allow more than one solution. As we
will demonstrate, nonuniqueness of solutions actually occurs
quite generically. The LD equation also gives rise to a new
: (1)  physical phenomenon: preacceleration. Indeed, the effect of
the asymptotic boundary condition in the future makes itself
_ . _ ) felt at early times, implying that an electron approaching a
wherez* is the position of the electrofand the singularity  gpar1y delineated region in space where a force field is
of its electromagnetic field dots denote derivatives with re- present, actually starts acceleratibgfore it reaches the
spect to proper time, ang= §(e?/4me,mc®)=0.62<10 ?*s  force field. This is sometimes considered to be an undesir-
is the “preacceleration time.” The fiel&#” only includes able feature. A number of alternatives to the LD equation
the electromagnetic field generated by external sources. Theave beer(re-)proposed over the yeaf&?2], but either run
last two terms in Eq(1) are due to the radiation reaction. into difficulties (mainly with energy conservationor neces-
The first is(minug the derivative of the radiated four mo- sitate additional structure. Although some of them may be
mentum, and the second, the Schott term, can be combinedlid as models for an electron that has an extended struc-
with the left-hand side into the time rate of change ofture, we will not consider these alternatives further.
p,=m(z,—7z,), the “bound momentum.” That momen-
tum can consistently be interpreted as the total momentum of
the electron together with its bound fidigl]. We will simply
call it the momentum in the sequel. Asymptotically, when
the acceleration ceases, it is equal to the usual momentum. In view of the considerable attention that the LD equation,
To set in perspective the remarkable fact that téssi- and its solutions, have generated, it is remarkable that the
cal equation allows the electron to tunnel through potentialclass of solutions that we are about to describe, with surpris-
barriers that are narrow enough to be crossed in a propéng physical implications, has gone unnoticed so far. They
time 7, we first discuss some general features of HEg.  describetunneling Explicit examples can be found by con-
Although the Lorentz-Dirac equation describes the radiatiorsidering the familiar setting from quantum mechanics: a one-
reaction in a satisfactory way, and has been used in a varietyimensional problem, where an electron impinges on a re-
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. RECTANGULAR POTENTIAL:
TUNNELING AND NONUNIQUENESS OF SOLUTIONS
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gion with a rectangular potential energy barrier. For ourvanishes. Without external force, if the velocity is directed
purposes the nonrelativistic approximatigNRA) will be  opppositely, it will quickly turn in a time of order in the
sufficient. Let us denote the external force field assame direction as th@onserveflmomentum. If the width is
F=—dV/dx. Choosing units such that the electron mass, theamall enough, the electron has in the meantime reached the
velocity of light, and the characteristic timeare equal to opposite side of the barrier. The smaller the width, the wider

unity, the equation becomes, with=Xx, the range of initial velocities for which the electron will tun-
nel through.
p=v—v=F. ) The explicit solution given above can be used to illustrate

another remarkable property of the LD equatitagether
The electron only experiences a force when crossing thwith the asymptotic condition viz. the failure of initial data
boundaries of the regions of constant potential. The solutionto determine the solution uniquely. If we take a barrier ex-
in the separate force-free regions, which are easy to writéending from x=3 to some valuex<-—9, and specify
down explicitly, are connected using the following matchingx=—9 and zero velocity in the infinite past, the second line
condition on the momentum, or the acceleration, the positiomf Eq. (5), extended to negative times, together with the last

and the velocity being continuous: line, constitute a solution that is an alternative to the trivial
) one with constant. This nonuniqueness is also mentioned in
Ap=—Av=—-AV/v. (3)  Ref.[11]. We do not regard this as a sufficient answer to the

initial condition question of Rohrliclh10] cited above. It is

This can be checked using the formal equationanalogous to the ambiguity present already in Newtonian
p=AV4(x). The validity of the rectangular barrier idealiza- mechanics, when specifying, in the infinite past, a zero ve-
tion is discussed later. The asymptotic condition is most eadecity at the top of a mountain: it is an isolated special case,
ily implemented by solving the matching conditions back-and an infinitesimally small initial velocity eliminates the
ward in time, puttingv;=0 (a procedure that is also stationary solution. Of considerably more interest is the fact
expedient when numerically integrating the equation the ~ that rectangular barrier crossing, whether by tunneling
nonrelativistic approximation Eq2), this results in the fol- through or by passing over it, very often exhibits a much
lowing set of equations relating the initial and final velocities More generic nonuniqueness, as has also been noted in Refs.

to the timeT spent in the barrier region of widttv and ~ [13] (however, this study has some problems; see further
heightV: and[15]. For values of the initial velocity sufficiently large

to cross the barrier, there is in general more than one distinct
solution, typically one where almost all energy is radiated

w=vT— v—f(e T=1+T), away and up to fivésee laterwhere a smaller radiation loss
occurs. This shows that the nonuniqueness is a common fea-
Vv v ture of the LD equation: given the no-runaway condition, it
vi=vgm —F ——————————. (4) is generically still insufficient to specify position and mo-
Ut v —X(l—e‘T) mentum at some initial time. This is true not only for
Y asymptotic initial values, but also for initial values at finite

times. This conclusion was also reached in R&4].

Although the analysis of these equations in general is not |t js important to realize that the features discussed above
very difficult, it becomes particularly simple when the final o not depend on the nonrelativistic approximation involved.
electron energy is equal to half the barrier heightv?. An  There is a simple scaling property of the NRA that leaves
explicit example is, folV=144 andw=3, this equation invariant, viz. rescaling all lengths, velocities,
. and accelerations with a common factor, and the barrier
x= —7(e-1)+16&, <0, height with its square. This implies that we can always res-

9(e'-1), 0O<t<T, cale such that only small velocities are involved, and our

3+12(t—T), T<t, ) discussion applies_. It is also possible to obtain expﬁb_ijt_

much more complicatgdunneling solutions of the relativis-

with T=In4/3. The matching condition E¢3) implies jumps t@c eq.uation(l) itself. The existence of the tunneling solu-
of 16 and— 12 units in the acceleration 40 andt=T. tons is therefore beyond doubt.

Tunneling occurs, and the initial energy is equal to 128, a
fraction 1/9 below the barrier height.

Whereas the details of the example above are of course
special, the tunneling phenomenon is actually quite generic. What is less clear is the possible role played by the sharp-
A decisive parameter is the width of the potential. If the ness of the potential step. Indeed, for the discontinuous po-
electron can cross the barrier within a time of order 1, i.e.tential step, it turns out that the problem as formulated above
the preacceleration time, tunneling occurs. To understand hasno solution for small incident velocities. This was no-
this it suffices to follow the bound momentum while the ticed, for a single potential step, in R¢fL3]. It was stated
electron crosses the barrier. Its value is piecewise constarthere that no mathematical difficulties are associated with the
and in the regions outside the barrier equal to its asymptoti@ealization of a sharp step. Physically, however, this ab-
value. Under the barrier itself the valueus—V/v¢, which  sence of solutions for a given initial velocity range is prob-
may be in the same directi@r oppositeto the velocity. The ably unacceptable. To investigate this point, and to ascertain
example above is special, in that the intermediate momenturat the same time that the tunneling feature is not correlated to

IIl. CONTINUOUS POTENTIAL: THE RAMP
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TABLE |. Overview of the four different types of motion, de- gentle slope é— ) the radiation energy loss is negligible,
scribed in the text. so that the final velocity is always larger thaf2V; for a
steep slope —0) with the same height, and small initial
velocity, half the energy is radiated away due to the larger
I _ inside sloping region + acceleration, and the final velocity approac
I - under plateau + Case IV: Here it is of course necessary that the electron
m n " has enough energy=V) to overcome the barrier, and if the
Y, _ slope is gentle this is sufficient. For a steep slope the mini-

mum initial energy is ¥. Note, however, the surprising fea-
ture that the solution is not fixed by the initial velocity alone:
hfé)r a range of initial velocities larger than the minimum re-
equired to overcome the barrier, there are actually two differ-
ent solutions(The behavior for this branch has been found,
for the relativistic case, in Refl14]). This range becomes
larger as the barrier becomes steeper, 4&/8% ¥ (point

A in the figurg. So we see now that nonuniqueness of solu-
tions indeed persists when the potential step is replaced with
a slope, and in fact we have also checked it numerically for
a completely smooth rami@ hyperbolic tangeint

Case v; Turning point Ug

this unphysical behavior, we repeated the analysis when t
electron climbs a ramp with a finite slope. We take the forc
F to be a constant over a region of widéh with V= eF.
(We will always consider a fixed height when we consider
the smalle limit). At the moment we consider only a single
ramp, we will come back to the tunneling situation later.
Again, in each of the regions of constant force, the LD equa
tion can be solved exactlNRA) in terms of elementary
;u:c_‘ugr(lzt, _ 1?;_,[;?23;?_”:: Trlgn th Zgaiilci)lf\llre]gti g artigtlr? 2 Cases | and Il both represent reflections. The branch start-

matching conditions. We use the same backward-in-tim Ing at the origin corresponds to case I, with>0 limiting
method as before ehaviorvf~vize/6V. The pointB where case Il takes over
. : b6\ 2/3_—1/3 Thi ;
Several possibilities arise. These are summarized in Tabli§ 'ocated av;~3” V2%~ 13 This shows that the behavior
I. In Fig. 1 (see the insgtwe plot the kinetic energy as a O @ Steep ramp is quite subtle. If one investigates only the
function of the position. A first possibility is that the final (forma) limiting equation without taking this into account,
velocity is directed away from the high plateau. Following ©n€ iS likely to miss branch I, although it is clearly a physi-
the electron back in time, two subcases can be distinguishe§@lly correct possibility, and in fact, for small velocities, this
the electron is turned back inside the sloping redicase ), ~ Solution is unique. The numerical study in RE¥3] exhibits
or it proceeds from the region of the high plateau. In thethiS Problem. We therefore reject the conclusion reached
latter case, the electron may turn bagiderthe high plateau there, that for small initial velocities no solutions would exist
(case I), originating from the low plateau on the right after a at _aII. In the smalle limit, this branch tends to the vertical
first passage through the force field, or else originate fron@XiS- The type-Il branch, on the other hand, has a smoother
the far left (case Il). Finally, the final velocity can be di- limit, and reduces to the straightforward solution for infinite
rected away from the low platedoase I\J. We now proceed SIOP€, as obtained from the matching condition Eﬁ)
to discuss the resulting motion in these different cases i "€re is no type-Il solution beyond poi in the figure:
more detail, with the help of the plot of final versus initial electrons with a larger final velocity necessarily originate
velocity in Fig. 1. from the plateau, and are shown on branch Ill. For a very
Case IlI: This motion agrees fully with intuition. For a 9entle slope, the whole compound curve 1 and I, will ap-
proach the line; = —v; representing no radiation loss, while
both pointsB andC converge tdD (v{=2V). For a very

Energy Incoming velocity steep slope, both poinBandC move towards infinite initial
‘ velocities ase ¥ (with a fixed ratio3/3/2), and limiting
v final velocities equal to 0 angV, respectively.
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Thus, when a high velocity electron meets a very steep
well, there is an amazing variety of different possible out-
comes. It may lose some energy and travelamve 1V, left
branch, just barely make it up the hillcurve 1V, right
branch having lost most of its energy in radiation, or be
reflected with a choice ahreedifferent velocities.

IV. DISCUSSION

It is clear that analogous results hold for a barrier with

FIG. 1. Plot of the initial velocity vs the final velocity for the finite width, and that tunneling solutions will persist fer
solution of the Lorentz-Dirac equation in a linearly rising step po- #* 0. Furthermore, we checked numerically that the qualita-
tential (note the difference in scaleThe dotted lines leave out the tive behavior discussed above is unaltered when using rela-
radiation reaction. The inset shows the potential and kinetic enedivistic kinematics(with yv instead of the velocity as a pa-
gies as functions of position for four representative examples. Théametej, and also in the case of an analytiout rapidly
four types of motion are discussed in the text. For the plots, a stepgarying potential. The tunneling solutions obtained for the
heightV=9 was used, and a slope widé0.5. rectangular barrier are limiting solutions of those for a
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smoothened barriete.g., the potential of closely packed becomes negative in the classically forbidden region.
point charges Thus we conclude that both the tunneling The essential feature of tunneling is that the crossing has
phenomenon and the nonuniqueness of physical solutions ate take place in proper times of the order of the preaccelera-
general properties of the LD equation, and not artifacts dudion time. For larger widths this could be obtained by con-
to unphysical properties of the potential or the nonrelativisticsidering very high speed electrons, which would effectively
approximation. see a Lorentz-contracted barrier. It is theoretically not diffi-
The key to the physical understanding of these phenomeult to construct arrangements of individual charges that
ena is the use of theoundmomentump, introduced in Ref.  might show the tunneling phenomenon for very fast elec-
[8]. Apart from the radiation losfthe second term on the trons(in such cases one should also expect to have to take
right-hand side of Eq(l)], its rate of change is given by the into account quantum effects/Vhereas in some astrophysi-
external force exerted on the electron. If the acceleration isal applicationgfor example the motion of charged particles
not too large, the difference from the “bare” momentum is in fields produced by pulsaf®]) there is a combination of
just a mass renormalization, but when the electron velocitfast electron motion with strong fields that necessitates the
changes rapidly the accompanying self-field needs some timase of the Lorentz-Dirac equation, it is not clear whether
to adjust to the new velocitgthe updating is limited by the they would provide a testing ground for the tunneling phe-
finite light speeg, andp, is no longer simply proportional to nomenon described in this paper.

'z#. A rough estimate indicates that, for phenomena taking
When the electron attacks a steep slope, the bound md¥ace in times of orderr, quantum considerations should
mentum has to decrease very rapidly. The electron can sinfnter. Since quantum electrodynamics is arguably the most
ply decelerate and bounce back, but if the potential is narrovguccessful physical theory known, it would be interesting to
enough there is a second possibility: the electron can makeligvestigate its relation to the tunneling phenomenon dis-
“jump,” i.e., a short acceleration, during which the bound cussed in the present paper, and more generally to the
momentundecreasesBecause of ithegativebare mass, the Lorentz-Dirac equation. This is outside the scope of the
bare electron gives a negative contribution to the bound moPresent paper.

mentum, which cannot immediately be compensated for en-

tirely by the accompanying Coulomb field. When the accel-

eration ceases, the Coulomb field catches up and the bound

momentum increases again, as it should once it reaches the F.D. and W.T. acknowledge the financial support of the
downward slope at the other side of the barrier. In this way=.W.O. (Belgium), and U.S. the support of the Research
tunneling can take place. Note that the kinetic engggy m  Council of the K. U. Leuven.

ACKNOWLEDGMENTS

[1] P. A. M. Dirac, Proc. R. Soc. London, Ser.167, 148(1938. C. Teitelboim, D. Villaroel, and Ch. G. van Weert, Riv. Nuovo
[2] J. D. Jackson(Classical ElectrodynamicéWiley, New York Cimento3, 1 (1980.
1962; A. O. Barut, Electrodynamics and Classical Theory of [9] H. Laue and K. O. Thielheim, Astrophys. J. Suppl. S&t,
Fields and Particles2nd ed.(Dover, New York, 1980 P. 465 (1986.
Pearle, inElectromagnetism: Paths to Researeiited by D.  [10] F. Rohrlich, Astrophys. J. Suppl. Sé1, 155(1986; 61, 261
Teplitz (Plenum, New York, 1982 (1986.
[3] F. Rohrlich, Classical Charged Particle§Addison-Wesley, [11] W. E. Baylis and J. Huschilt, Phys. Rev. I3, 3237(1976.
Reading, MA, 196% [12] Recent examples are G. W. Ford and R. F. O’Connell, Phys.
[4] J. A. Wheeler and R. P. Feynman, Rev. Mod. PHya. 15 Lett. A 157, 217 (1991); 158 158 (1991); 174, 182 (1993;
(1945. Phys. Rev. Ad4, 6386(199)); E. N. Glass, J. Huschilt, and G.
[5] S. Coleman, inElectromagnetism: Paths to Resear(Ref. Szamosi, Am. J. Phy&2, 445(1984; A. O. Barut, Phys. Lett.
[2)). A 145, 287(1990; 169, 120(1992.
[6] A. O. Barut, Phys. Rev. 0, 3335(1974; A. O. Barutand D.  [13] S. F. Gull, The Electron edited by D. Hestenes and A. Wein-
Villaroel, J. Phys. A8, 156 (1975; 8, 1537(1975. gartshofer(Kluwer, Dordrecht, 1991
[7] M. E. Brachet and E. Tirapegui, Nuovo Cimento4X, 210  [14] S. Parrott and D. J. Endres, Found. PH35;. 441 (1995.
(1978. [15] A. Carati, P. Delzanno, L. Galgani, and J. Sassarini, Nonlin-

[8] C. Teitelboim, Phys. Rev. 00, 1572(1970; 2, 1763(1970; earity 8, 65 (1995.



